Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Transfusion ; 60(5): 908-911, 2020 05.
Article in English | MEDLINE | ID: covidwho-2193291

ABSTRACT

BACKGROUND: The first coronavirus (COVID-19) case was reported in United States in the state of Washington, approximately 3 months after the outbreak in Wuhan, China. Three weeks later, the US federal government declared the pandemic a national emergency. The number of confirmed COVID-19 positive cases increased rather rapidly and changed routine daily activities of the community. STUDY DESIGN AND METHODS: This brief report describes the response from the hospital, the regional blood center, and the hospital-based transfusion services to the events that took place in the community during the initial phases of the pandemic. RESULTS: In Washington State, the first week of March started with four confirmed cases and ended with 150; by the end of the second week of March there were more than 700 cases of confirmed COVID-19. During the first week, blood donations dropped significantly. Blood units provided from blood centers of nonaffected areas of the country helped keep inventory stable and allow for routine hospital operations. The hospital-based transfusion service began prospective triaging of blood orders to monitor and prioritize blood usage. In the second week, blood donations recovered, and the hospital postponed elective procedures to ensure staff and personal protective equipment were appropriate for the care of critical patients. CONCLUSION: As community activities are disrupted and hospital activities switch from routine operations to pandemic focused and urgent care oriented, the blood supply and usage requires a number of transformations.


Subject(s)
Betacoronavirus , Blood Transfusion , Coronavirus Infections , Pandemics , Pneumonia, Viral , Blood Donors , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Hospital Planning , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Washington/epidemiology
2.
Blood ; 139(10): 1564-1574, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1736325

ABSTRACT

Cases of de novo immune thrombocytopenia (ITP), including a fatality, following SARS-CoV-2 vaccination in previously healthy recipients led to studying its impact in preexisting ITP. In this study, 4 data sources were analyzed: the Vaccine Adverse Events Reporting System (VAERS) for cases of de novo ITP; a 10-center retrospective study of adults with preexisting ITP receiving SARS-CoV-2 vaccination; and surveys distributed by the Platelet Disorder Support Association (PDSA) and the United Kingdom (UK) ITP Support Association. Seventy-seven de novo ITP cases were identified in VAERS, presenting with median platelet count of 3 [1-9] ×109/L approximately 1 week postvaccination. Of 28 patients with available data, 26 responded to treatment with corticosteroids and/or intravenous immunoglobulin (IVIG), and/or platelet transfusions. Among 117 patients with preexisting ITP who received a SARS-CoV-2 vaccine, 19 experienced an ITP exacerbation (any of: ≥50% decline in platelet count, nadir platelet count <30 × 109/L with >20% decrease from baseline, and/or use of rescue therapy) following the first dose and 14 of 70 after a second dose. Splenectomized persons and those who received 5 or more prior lines of therapy were at highest risk of ITP exacerbation. Fifteen patients received and responded to rescue treatment. In surveys of both 57 PDSA and 43 UK patients with ITP, prior splenectomy was associated with worsened thrombocytopenia. ITP may worsen in preexisting ITP or be identified de novo post-SARS-CoV2 vaccination; both situations responded well to treatment. Proactive monitoring of patients with known ITP, especially those postsplenectomy and with more refractory disease, is indicated.


Subject(s)
COVID-19 Vaccines , COVID-19 , Purpura, Thrombocytopenic, Idiopathic , SARS-CoV-2 , Aged , Aged, 80 and over , Blood Platelets/immunology , Blood Platelets/metabolism , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Female , Humans , Male , Middle Aged , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Purpura, Thrombocytopenic, Idiopathic/immunology , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Splenectomy , United Kingdom/epidemiology
5.
Blood Adv ; 5(13): 2794-2798, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1308091

ABSTRACT

A variety of autoimmune disorders have been reported after viral illnesses and specific vaccinations. Cases of de novo immune thrombocytopenia (ITP) have been reported after SARS-CoV-2 vaccination, although its effect on preexisting ITP has not been well characterized. In addition, although COVID-19 has been associated with complement dysregulation, the effect of SARS-CoV-2 vaccination on preexisting complementopathies is poorly understood. We sought to better understand SARS-CoV-2 vaccine-induced recurrence of autoimmune- and complement-mediated hematologic conditions. Three illustrative cases were identified at the University of Washington Medical Center and the Seattle Cancer Care Alliance from January through March 2021. We describe the recrudescence of 2 autoimmune conditions (ITP and acquired von Willebrand Disease [AvWD]/acquired hemophilia A) and 1 complementopathy (paroxysmal nocturnal hemoglobinuria [PNH]). We report the first known case of AvWD/acquired hemophilia A, and describe the first PNH exacerbation in the absence of complement inhibition after SARS-CoV-2 vaccination. Although SARS-CoV-2 vaccine-induced ITP is a known concern, our case clearly depicts how thrombocytopenia in the setting of preexisting ITP can sequentially worsen with each vaccine dose. Based on our experiences and these examples, we provide considerations for how to monitor and assess risk in patients with underlying autoimmune- and complement-mediated hematologic conditions.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Recurrence , SARS-CoV-2 , Vaccination/adverse effects
6.
J Clin Invest ; 131(3)2021 02 01.
Article in English | MEDLINE | ID: covidwho-1124908

ABSTRACT

BACKGROUNDSARS-CoV-2-specific antibodies may protect from reinfection and disease, providing rationale for administration of plasma containing SARS-CoV-2-neutralizing antibodies (nAbs) as a treatment for COVID-19. Clinical factors and laboratory assays to streamline plasma donor selection, and the durability of nAb responses, are incompletely understood.METHODSPotential convalescent plasma donors with virologically documented SARS-CoV-2 infection were tested for serum IgG against SARS-CoV-2 spike protein S1 domain and against nucleoprotein (NP), and for nAb.RESULTSAmong 250 consecutive persons, including 27 (11%) requiring hospitalization, who were studied a median of 67 days since symptom onset, 97% were seropositive on 1 or more assays. Sixty percent of donors had nAb titers ≥1:80. Correlates of higher nAb titers included older age (adjusted OR [AOR] 1.03 per year of age, 95% CI 1.00-1.06), male sex (AOR 2.08, 95% CI 1.13-3.82), fever during illness (AOR 2.73, 95% CI 1.25-5.97), and disease severity represented by hospitalization (AOR 6.59, 95% CI 1.32-32.96). Receiver operating characteristic analyses of anti-S1 and anti-NP antibody results yielded cutoffs that corresponded well with nAb titers, with the anti-S1 assay being slightly more predictive. nAb titers declined in 37 of 41 paired specimens collected a median of 98 days (range 77-120) apart (P < 0.001). Seven individuals (2.8%) were persistently seronegative and lacked T cell responses.CONCLUSIONnAb titers correlated with COVID-19 severity, age, and sex. SARS-CoV-2 IgG results can serve as useful surrogates for nAb testing. Functional nAb levels declined, and a small proportion of convalescent individuals lacked adaptive immune responses.FUNDINGThe project was supported by the Frederick National Laboratory for Cancer Research with support from the NIAID under contract number 75N91019D00024, and was supported by the Fred Hutchinson Joel Meyers Endowment, Fast-Grants, a New Investigator award from the American Society for Transplantation and Cellular Therapy, and NIH contracts 75N93019C0063, 75N91019D00024, and HHSN272201800013C, and NIH grants T32-AI118690, T32-AI007044, K08-AI119142, and K23-AI140918.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Blood Donors , COVID-19/therapy , Immunoglobulin G , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Female , Humans , Immunization, Passive , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , COVID-19 Serotherapy
9.
Transfusion ; 60(12): 2859-2866, 2020 12.
Article in English | MEDLINE | ID: covidwho-733191

ABSTRACT

BACKGROUND: This report evaluates hospital blood use trends during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, and identifies factors associated with the need for transfusion and risk of death in patients with coronavirus 2019 (COVID-19). METHODS: Overall hospital blood use and medical records of adult patients with COVID-19 were extracted for two institutions. Multivariate logistic regression models were conducted to estimate associations between the outcomes transfusion and mortality and patient factors. RESULTS: Daily blood use decreased compared to pre-COVID-19 levels; the effect was more significant for platelets (29% and 34%) compared to red blood cells (25% and 20%) at the two institutions, respectively. Surgical and oncologic services had a decrease in average daily use of platelets of 52% and 30%, and red blood cells of 39% and 25%, respectively. A total of 128 patients with COVID-19 were hospitalized, and 13 (10%) received at least one transfusion due to anemia secondary to chronic illness (n = 7), recent surgery (n = 3), and extracorporeal membrane oxygenation (n = 3). Lower baseline platelet count and admission to the intensive care unit were associated with increased risk of transfusion. The blood group distribution in patients with COVID-19 was 37% group O, 40% group A, 18% group B, and 5% group AB. Non-type O was not associated with increased risk of mortality. CONCLUSION: The response to the SARS-CoV-2 pandemic included changes in routine hospital operations that allowed for the provision of a sufficient level of care for patients with and without COVID-19. Although blood type may play a role in COVID-19 susceptibility, it did not seem to be associated with patient mortality.


Subject(s)
Blood Transfusion/statistics & numerical data , COVID-19/epidemiology , Delivery of Health Care/statistics & numerical data , Health Services Needs and Demand/statistics & numerical data , Pandemics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Anemia/epidemiology , Anemia/therapy , Blood Donors/supply & distribution , Blood Group Antigens/analysis , Blood Loss, Surgical , COVID-19/blood , COVID-19/mortality , Comorbidity , Extracorporeal Membrane Oxygenation/adverse effects , Female , Hospitalization , Humans , Male , Middle Aged , Procedures and Techniques Utilization , Risk , Severity of Illness Index , Washington/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL